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Abstract Transactional Memory (TM) promises to simplify parallel programming
by replacing locks with atomic transactions. Despite much recent progress in TM re-
search, there is very little experience using TM to develop realistic parallel programs
from scratch. In this article, we present the results of a detailed case study compar-
ing teams of programmers developing a parallel program from scratch using trans-
actional memory and locks. We analyze and quantify in a realistic environment the
development time, programming progress, code metrics, programming patterns, and
ease of code understanding for six teams who each wrote a parallel desktop search
engine over a fifteen week period. Three randomly chosen teams used Intel’s Soft-
ware Transactional Memory compiler and Pthreads, while the other teams used just
Pthreads. Our analysis is exploratory: Given the same requirements, how far did each
team get? The TM teams were among the first to have a prototype parallel search
engine. Compared to the locks teams, the TM teams spent less than half the time
debugging segmentation faults, but had more problems tuning performance and im-
plementing queries. Code inspections with industry experts revealed that TM code
was easier to understand than locks code, because the locks teams used many locks
(up to thousands) to improve performance. Learning from each team’s individual
success and failure story, this article provides valuable lessons for improving TM.
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1 Introduction

Multicore is a challenge for software engineering, and we need mainstream languages
that support productive and robust parallel programming. In response to the problems
of parallel programming with locks, Transactional Memory (TM) has been proposed
as an alternative synchronization mechanism. Several new parallel programming lan-
guages such X10, Fortress, Chapel, and Clojure, all provide transactions in-lieu of
locks as the primary concurrency control mechanism. Other research systems have
extended existing languages such as C++ [22], Java [2], Haskell [14], and ML [27]
with support for Transactional Memory.

Despite the recent advances in TM research, there is little experience using TM
to develop more realistic parallel programs from scratch. Recent discussions such as
[29] of TM versus locks focused on small programs or micro-benchmarks to evalu-
ate the worst case performance, but none of them took into account more complex
applications to evaluate software engineering aspects over a longer period of time.
Other work studying the conversion of locks programs to TM did not shed light on
the issues encountered when parallelizing with TM from scratch [41].

This article addresses a novel research question in an exploratory case study: How
exactly do individuals program in parallel with locks and TM, given the same pro-
gramming problem specification? Using diverse, real cases, we aim to analyze in-
depth how the use of TM or lock-based constructs influence parallel programming
and the resulting program. This approach differs from previous work providing a
locks-versus-TM performance comparison on the same exact program. Moreover,
we focus on learning from individual approaches rather than on testing hypotheses
on statistically aggregated data.

We study graduate-level student programmers tasked with developing a parallel
desktop search engine from scratch under realistic time pressures. The study was
organized as a one-semester graduate-level computer science course at Karlsruhe In-
stitute of Technology (KIT) in Germany.1 All subjects received the same four-week
training at the start of the semester. The programming part of the project spanned ten
weeks starting after the training. The study randomly assigned twelve graduate stu-
dents to six teams. Three of the teams (teams L1, L2, and L3) had to use locks, while
the other three teams (TM1, TM2, and TM3) had to use TM language constructs pro-
vided by the Intel C++ Software Transactional Memory (STM) compiler [22]—one
of the most advanced STM compilers built on top of Intel’s production C++ compiler.

The case study shows that TM was indeed applicable to a more complex, non-
numerical program, and that a combination of TM with locks is useful and came out
of necessity in practice. Locks teams spent more time on debugging due to segmen-
tation faults than TM teams. TM teams, however, spent more time on performance-
related issues than locks teams. The parallel programs of TM teams were easier to
understand, according to code inspections done jointly with industry compiler ex-
perts. Locks teams tended to have more complex parallel programs by employing up
to thousands of locks to achieve scalability. The article also shows that TM does not
solve all concurrency control problems, and thus is not a silver bullet. In particular,

1This study has been conducted while the first author was at KIT in Germany.



www.manaraa.com

Theory Comput Syst (2014) 55:555–590 557

both the locks and TM teams had data races because they used incorrect double-
checked locking patterns [4].

The article is an extended version of [24] and makes the following contributions:
(1) it is the first study to document how several teams wrote a realistic application
from scratch using TM and locks over an extended period of time; (2) it provides
insights by analyzing a combination of quantitative and qualitative data on perfor-
mance, hours spent on various development phases, code metrics, ease of code un-
derstanding, and subjective psychological issues; (3) it shows that TM is indeed a
valuable approach for parallel programming, although with an immature tool chain;
(4) it provides evidence that it was beneficial to use TM and locks in combination,
thus leveraging the advantages of both programming models; and (5) it collects evi-
dence falsifying opinions that TM does not help building real-world parallel applica-
tions.

Empirical studies with human subjects are vital for assessing the true value of par-
allel programming proposals in practice and exposing problems and new directions
to the research community. Unfortunately, case studies like this one are rare because
they are costly, risky, and require a long time to conduct.

The article is organized as follows. Section 2 summarizes the parallel program-
ming models in this study. Section 3 presents the project requirements, the STM
compiler, and collected evidence. Section 4 presents code metrics focusing on pro-
ductivity and the use of parallelism constructs. Section 5 discusses the results of code
inspections for all the programs. Section 6 breaks down the effort each team spent on
parallelization, tuning, and debugging. Section 7 measures the performance of each
team’s search engine. Section 8 summarizes key results from our study. Section 9
discusses potential threats to validity. Section 10 contrasts related work. Section 11
provides our conclusion.

2 The Parallel Programming Models in This Study

Most programmers today use shared-memory parallel programming techniques to
program multicore computers. Mainstream programming languages provide con-
structs to create concurrent threads of control, to synchronize concurrent access to
shared data, and to co-ordinate thread execution. While earlier languages such as C
or C++ use standardized APIs (e.g., Pthreads, the Posix Threads library [8]) to pro-
vide parallel programming constructs, more recent languages like Java and C# have
native language support. Large-scale scientific, industrial, and open-source projects
mostly use C, C++, and Pthreads. We therefore pick the Pthreads approach as repre-
sentative for programming with locks and provide a brief overview next.

2.1 Programming with Locks

Pthreads is a standardized, platform independent API for parallel programming in C
and C++ [8]. The programming approach with Pthreads is very low level: program-
mers must manually create and manage threads, insert locks (mutexes) for mutual ex-
clusion, define condition variables to coordinate concurrent producer-consumer pro-
cessing, and manage thread-local storage.
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The motivation for this style of programming is performance, giving developers
more control and reducing overhead. This flexibility comes at a price, with well-
known pitfalls. Simplistic coarse-grain locking can result in poor scalability due to
lock contention, which can be eliminated in several ways: Fine-grain locking asso-
ciates separate locks with individual shared data items accessed inside critical sec-
tions so that threads that access disjoint data items can execute in parallel. Reader-
writer locks allow more than one thread to read shared data in parallel inside criti-
cal sections. Unfortunately, all these optimization techniques expose a programmer
to concurrency bugs, namely deadlocks, data races, and atomicity violations (also
known as high-level data races). Moreover, incorrect use of lock-based condition
synchronization can lead to lost wake-up bugs.

In addition to risking new bugs, locks also don’t support programming in the
large very well, in which distributed development teams build large programs out
of separately-authored software components. After optimizing the locking inside a
software component, a programmer is not guaranteed that the performance of the
optimized component will scale once it is composed with other components in a par-
allel program. Locks also make providing exception safety guarantees at component
boundaries more difficult; a programmer must carefully release the right locks in the
right order inside exception handlers, and avoid exposing broken invariants to other
threads and introducing data races by releasing locks before recovering from the ex-
ceptions.

2.2 Programming with Transactional Memory

Software Transactional Memory employs atomic transactions instead of locks. A pro-
grammer defines a transaction by enclosing a set of programming language state-
ments in an atomic block. Such a block represents a critical section and must contain
only statements with reversible effects. A run-time system allows threads to execute
atomic blocks concurrently while making it appear that only one thread at a time ex-
ecutes within an atomic block. If a concurrently executing transaction conflicts with
another transaction, the run-time aborts it (i.e., undoes its effects) and retries it later
on; otherwise, it commits it and makes its effects visible to all other threads. The
run-time system basically enforces the atomicity, consistency, and isolation proper-
ties known from database transactions [12] that now apply to programming language
statements.

TM promises to alleviate many of the challenges of parallel programming with
locks. It relieves the programmer from low-level locking details, such as dealing with
multiple locks and complex locking protocols. It also eliminates deadlocks due to
incorrect ordering of locks. TM can make it easier for programmers to recover from
exceptions and errors by providing failure atomicity. The typical approach is that TM
systems implement a rollback mechanism exposed to the programmer via an explicit
abort construct or an via implicit rollback on uncaught exceptions.

TM also has pitfalls. It is still possible to have data races. Large transactions can
hurt scalability and performance. For example, programmers may attempt to optimize
their transaction-based code by shrinking the size of atomic blocks, moving code out
of atomic blocks, or breaking atomic blocks into smaller ones. These transformations
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may inadvertently introduce data races in which a variable is accessed concurrently
both inside and outside a transaction.

Recent research on adding TM support to programming languages has also uncov-
ered numerous tradeoffs in language design and in the kind of TM-related features
that can be provided to the programmer. More empirical studies and experiments with
real-world parallel programs are needed to help assess the right tradeoffs to make, and
when it is appropriate to use TM.

Despite these potential pitfalls of TM, its proponents argue that the combination
of automatic fine-grain concurrency control, automatic failure atomicity, and reduced
potential for deadlocks, all allow TM to support modular programming in the large
better than locks can. Supporters also argue that although TM is not a parallel pro-
gramming silver bullet, it is a step in the direction of providing a much more robust
and productive concurrency control mechanism compared to today’s locks.

2.3 The Intel STM Compiler

In this study, we used Intel’s STM compiler as a representative implementation of the
TM approach, because it is one of the most advanced STM compilers so far. The Intel
compiler is an industrial-strength C and C++ compiler that has been extended with a
prototype implementation of transactional language constructs for C++ [22]. Part of
the extensions are annotations to functions and classes to mark functions that will be
called inside transactions.

The __tm_atomic keyword defines an atomic block of statements. Atomic
blocks can be nested, which means that the effects of inner transactions are only
visible when the outer transaction commits. The __tm_abort statement rolls back
a transaction and reverses the effects to the state that existed on the entry to the inner-
most transaction enclosing the abort statement. The __tm_callable annotation
marks functions that can be called inside transactions and instructs the compiler to
generate a transactional clone with the necessary instrumentation on shared memory
accesses. The instrumentation calls into the STM run-time, which tracks conflicts
between transactions. On detecting a conflict, the run-time rolls back the effects of
a transaction and retries it. The __tm_pure annotation marks functions that the
compiler does not need to instrument; it is the programmer’s responsibility to make
sure that such functions can be called inside transactions without instrumentation.

3 Case Study Design

This section presents an overview of the project, programming scenario, and team
experience. We also discuss the sources used to collect empirical evidence.

3.1 The Project

Every team developed a desktop search engine based on the following indexing and
search requirements. The search engine works on text files only. It starts crawling
in a pre-defined directory and recursively in all subdirectories. The index does not
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have to persist on disk. Different strategies for index creation may be employed (e.g.,
division into several sub-indices). All non-alphanumeric characters are treated as
word separators. Case and hyphens between words are ignored. A progress indicator
for indexing must show bytes and files processed so far, words found so far, and the
number of words in the index. The number of indexing threads must be configurable
via a command line parameter.

The search must allow different types of queries: (1) queries for coherent text
passages (e.g., “this is a test”); (2) queries with wildcard at the beginning or the end
of a word (e.g.,“hou*” or “*pa”); (3) queries containing several words representing
AND concatenation (e.g., “tree house garden”); (4) queries with word exclusion (e.g.,
“-fruit”). Queries must be allowed to execute while indexing is in progress, but it is
not required to run more than one query at a time in parallel. It was up to the teams
to decide whether to parallelize each query; the number of query threads was not
required to be configurable from the command line, but the teams had to provide a
reasonable default for the benchmarking. We assume that the files to be indexed do
not change while the desktop search engine executes. In addition, no files are deleted
and no new files are added. Features that are not required are an “OR” operator in
queries, stemming or word similarity search, and regular expressions.

Files for which the query is true must be output in a sorted order according to
a primary and secondary criterion: (1) the sum of occurrences of all query words,
needed if several criteria exist, such as in AND queries; and (2) alphabetically by file
name. The default output of a query consists of the first 50 paths and files sorted as
mentioned before, the total number of files matching a query, and the query time.

3.2 Scenario

To simulate a real-world industry scenario, we allowed the teams to use any data
structures that they wanted. To be even more realistic, we allowed them to reuse any
library or open-source code from the Web. This diversity was intentional because it
helped find out which approaches worked and which did not work. All teams had
access to the multicore machine that was finally used by the instructors to benchmark
each submission.

Before the study started, we gave the same parallel programming training to all
students covering common parallel programming issues such as race conditions,
deadlocks, as well as performance optimization, reductions, and other topics. We
also conducted a feasibility study to make sure that the timeframe set for all teams is
sufficient to finish the project and implement all features.

The TM teams were allowed to use only Pthreads in combination with the TM
extensions so that they could create and manage threads. It is technically possible to
use locks, semaphores, and condition variables in combination with transactions, and
students were allowed to do so.

3.3 Team Experience

All students had Bachelor-equivalent degrees in computer science and were pursuing
Master’s degrees in computer science at KIT. Students with inappropriate skills were
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not accepted in the project, and all accepted students received the same training on
TM and locks prior to project start. All teams except team TM3 had one member with
course experience on parallelism.

Figure 1 shows the experience profile of all teams prior to the study. Each axis
shows the years of experience with programming languages, libraries, parallel pro-
gramming approaches, tools, and operating systems. The “Semester” axis shows the
number of semesters the student has been enrolled in the university since high school.
We also collected proficiency data, but this data did not appear to provide any more
insight than the experience data, so we omit it.

It is valuable for a case study to observe and compare the performance of teams
that have a wide variety of experiences. The profiles show that some teams have less
overall experience than others; for example, team TM1 has less experience than team
TM2 or team TM3. Additional data not shown in Fig. 1 is presented in [25].

3.4 Collection of Evidence

Throughout this study, we followed the recommendations of [30, 39, 40] and used
several sources of qualitative and quantitative evidence: (1) The teams used diaries to
take notes, track progress, explain ideas and successful or unsuccessful approaches,
document technical or non-technical problems, and capture events that had an impact
on the work. (2) A time report sheet capturing effort on a daily basis, split according
to predefined task categories. Section 6 analyzes these times reports. (3) Notes from
weekly (semi-structured) interviews [30] asking open-ended questions about current
status, problems, and plans without requiring any particular format in the response.
Tables 1 and 2 summarize the interviews starting on the fourth week of the project,
which was the first week with clearly visible progress. (4) A post-project question-
naire, filled out individually by each student. The detailed questions and all answers
are listed in [25]. (5) The source code produced by each team. (6) The subversion
repository that all teams were required to use. (7) Personal observations of the in-
structor.

4 Code Metrics

This section presents measurements of objective code metrics gathered from all pro-
grams.

4.1 Summary of Insights

The results show that in this study, the locks-based programs were more complex
parallel programs, because the locks programmers tended to use many locks; our
code inspections in Sect. 5 reinforce with additional observations that locks pro-
grams were more complex. Although the locks and TM teams programmed par-
allel search engines with similar functionality, the TM teams used fewer critical
sections that often had fewer lines of code than the critical sections of the locks
teams.
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Table 1 Progress summary from locks teams interviews

Prj.
week

4 • L1: The team discussed the index design and the placement of locks, but did not have any code
running yet.
• L2: The team finished a sequential indexer and assessed its performance. They were the first team
to elaborate thoughts on how threads might traverse the index in parallel.
• L3: The team did not have a running program yet. The team discussed indexing strategies and
data structures choices, but had no code running.

5 • L1: The team assessed two prototypes for parallel indexing in various experiments. First, they
used one global mutex, which yielded bad performance. Then, they decided to go for several
independently locked sub-indexes.
• L2: The team implemented a rudimentary parallel indexer.
• L3: The team had implemented a sequential prototype with an index structure, and they were
testing the performance. They had a customized, small benchmark that was unrelated to the case
study benchmark.

6 • L1: The team had a prototype of parallel indexing and parallel queries working, but the prototype
had performance problems. The file crawler—a key component for indexing—was not
implemented, but just simulated.
• L2: Parallel indexing worked. Queries could be executed while indexing was in progress.
• L3: Parallel indexing worked. Queries were implemented in a rudimentary way.

7 • L1: Parallel indexing and parallel queries still worked with the simulated file crawler. They were
working on query result ranking but were not finished yet.
• L2: The team has made little progress due to problems with C.
• L3: The team showed how they used the Linux system monitor for performance testing and
debugging. There was not much other progress to see.

8 • L1: The team had finished all components except the file crawler, but they hadn’t tested it yet on
the real benchmark.
• L2: The team found out that they had problems compiling their code on other machines and were
about to fix that.
• L3: Parallel indexing and parallel search worked, but only on a subset of the case study
benchmark.

9 • L1: The team finished implementing the file crawler. Parallel indexing and parallel queries
worked, but were unstable.
• L2: Parallel indexing parallel queries worked. The team fixed segmentation faults and did
performance tests.
• L3: Parallel indexing and queries worked. The team continued with performance testing.

10 • L1: The team still had not tested performance on the given benchmark.
• L2: The team was about to test performance on the given benchmark.
• L3: The team was about to fix a bug with the file statistics update of their indexer.

The results also show that two of the TM teams combined TM with Pthreads syn-
chronization primitives, and that the TM teams rarely used the more advanced TM
language constructs—only one team used the __tm_pure keyword, and only one
team used the __tm_abort keyword. Our code inspections, presented in Sect. 5,
provide further insight into these results. Inspections revealed that the Pthreads syn-
chronization primitives were used for I/O and producer-consumer co-ordination.
Inspections further revealed that __tm_pure was used for printing debug mes-
sages and optimizing access to immutable data, and that __tm_abort was used
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Table 2 Progress summary from TM teams interviews

Prj.
week

4 • TM1: The team discussed design alternatives.
• TM2: The team was about to implement their index data structure and planned to have an
executable version in 1–2 weeks.
• TM3: The team had a rudimentary indexer. They had problems understanding and applying TM
constructs.

5 • TM1: The team was testing a first sequential indexer. They had not thought how to parallelize or
how to use TM.
• TM2: The team implemented sequential index reading and writing operations. No thoughts on
parallelism.
• TM3: This was the first team of all with a working parallel indexer. Performance tests are done on
the final benchmark. Segmentation faults appeared due to missing thread-safe TM libraries; they
start implementing low-level functions by themselves.

6 • TM1: The team’s entire code was sequential and incomplete. They had no new thoughts on
parallelism or TM; many of their ideas were not well-developed. They planned to parallelize their
program the following week. They were worried about the performance of their sequential program
and hoped that parallelism would make it faster. The memory consumption of their program began
to grow.
• TM2: The team’s entire code was still sequential. Neither of them had thought of parallelism or
transactions yet.
• TM3: The team’s parallel indexing worked. A rudimentary query could execute while indexing
was in progress.

7 • TM1: The team had made some unsuccessful parallelization attempts. They tested their program
with just one of the files from the benchmark. They had memory leaks they couldn’t find.
• TM2: The team evaluated the TM annotations for functions on the their index. Part of the
sequential code for insertions had to be restructured. They developed a strategy to minimize
transaction overhead. Search was not implemented yet; they assumed it was trivial, though in the
end almost no query worked.
• TM3: The team finished implementing their thread-safe library functions.

8 • TM1: The team had procrastinated much of the parallelization work; indexing was serial. The few
parallelization attempts were superficial. The memory leak was still there. Only one word could be
used in a query.
• TM2: The team had not yet finished parallel indexing. No performance tests had yet been done.
Queries did not work yet.
• TM3: The team showed a full-fledged working demo of parallel indexing and search. They used
compiler statistics (such as #TMaborts, #TMretries, etc.) for performance optimization.

9 • TM1: The team’ parallel indexing and queries were almost finished. Queries allowed just the
inclusion or exclusion of one word.
• TM2: The team’s indexing and queries worked in parallel, but were not error-free. The program
performance was still bad. Too much of the code was enclosed by atomic blocks. They started a lot
of non-trivial refactoring to shrink the size of atomic blocks.
• TM3: The team fixed a segmentation fault and many bugs.

10 • TM1: The team’s indexing did not work for the case study benchmark, due to the memory leak
they did not fix. Turning on compiler optimizations caused segmentation faults, which was a bug in
the compiler.
• TM2: The team’s parallel indexing and queries worked. Turning on compiler optimizations caused
segmentation faults. The frustrated team said that TM did not really relieve them from their
problems, but just shifted them to transactions. They had problems understanding the performance
overhead of _ _tm_atomic blocks; they were more expensive than expected.
• TM3: The team’s search engine was complete. They used TM frequently, but the team said it was
difficult and tedious to find the places where to employ the _ _tm_callable function annotation.
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Fig. 2 Code metrics for the parallel desktop search engines of all teams

incorrectly in a racy fashion to optimize performance instead of being used for fail-
ure atomicity.

Figure 2 shows the total lines of code (LOC) produced by all teams, excluding
comments, blank lines, or code from foreign libraries. All teams produced about the
same amount of code; on average, locks teams produced 2160 LOC, and TM teams
produced 2228 LOC.

TM teams have a higher standard deviation of LOC compared to locks teams,
which can be explained by the fact that team TM1 (the most inexperienced team)
had incomplete code that did not work on the final benchmark. On the other hand,
team TM3 had more code than any other team, because they decided to implement
themselves many thread-safe helper functions due to lacking library support for TM
programs.
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4.2 Usage of Parallel Constructs

Locks and TM teams clearly differ in how many lines of code contain parallel con-
structs (Fig. 2). Between 5 % and 11 % of the locks teams code had parallel constructs
(179 LOC on average). By contrast, between 2 % and 5 % of TM teams code had par-
allel constructs (83 LOC on average).

All locks teams used condition variables, but none of the TM teams did. Two
of the TM teams used Pthread constructs in addition to the constructs for thread
creation or destruction: As will be discussed in Sect. 5, team TM2 used one lock to
protect a large critical section containing I/O, and team TM3 used two semaphores
for producer-consumer synchronization.

Synchronization constructs were rarely lexically nested, with at most one level of
lexical nesting. Later code inspections revealed for all TM teams that the nesting of
their nested transactions was not necessary.

The special-purpose TM constructs offered by Intel’s compiler were used very
differently. Team TM2 used the __tm_callable annotation in 2 lines of
code, but team TM3 used it in 115 lines. Team TM2 were the only team that
used the __tm_pure annotation; later code inspections show that one usage of
__tm_pure was for a declaration of printf so that they could debug the pro-
gram. This is evidence that we need better debugging tools for TM. Only team TM1
used the __tm_abort construct, but as later code inspections show, they did not
use it as it was intended to be used for failure atomicity—most of the time they used it
incorrectly to optimize performance and implemented a racy double-checking pattern
[4].

4.3 Comparison of Critical Sections

The critical sections differ for locks teams and TM teams. Figure 3 shows details on
how many critical sections each team had and the cumulative lines of code. We see,
for example, that team L2 has 25 critical sections with a size less than or equal to
1 LOC, 36 critical sections with a size less than or equal to 4 LOC, and so on.

We statically approximated a lower bound on the length of critical sections by
manually counting the LOC enclosed by lock/unlock operations, semaphore opera-
tions, or atomic blocks, and excluding comments and blank lines. Information from
code inspections shows that some locks teams had arrays with thousands of locks,
but these lock definitions showed up as just one line of code; we counted a function
call within a critical section as one LOC and omitted dynamic analyses.

A key observation is that most critical sections are short. TM teams have fewer
critical sections than locks teams, even though all teams implement similar function-
ality. The locks teams have many critical sections with just one line of code, which
could have been easily expressed as atomic blocks.

5 Code Inspections

In this section, we present observations from code inspections. The authors and
leading industry compiler experts inspected each team’s code in detail, but in an
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Fig. 3 Code distribution in critical sections

anonymized form. These inspections allow us to analyze the use of constructs, the
kinds of parallel programming mistakes, and code and bug patterns. We present se-
lected highlights from each team on architecture, major data structures, synchroniza-
tion, ease of code understanding, and problems.

5.1 Summary of Insights

The code inspections revealed several interesting usages of the parallelism primi-
tives. First, the lock-based programs used many fine-grain locks to get scalability,
and the use of fine-grained locks was difficult to validate by code inspection. Second,
code inspections revealed why the TM teams combined Pthreads synchronization
with atomic blocks, and how they used the more advanced TM language constructs:
Realistic TM programs require producer-consumer synchronization, perform I/O, and
need ways to optimize access to immutable data.

Despite being taught otherwise, our inspections revealed that all teams—both
locks and TM teams—incorrectly assumed in several places that it is safe to read
shared data without synchronization and had obvious data races due to racy double-
checked locking patterns [4].

5.2 Code Inspections for Locks Teams

In general, all locks teams parallelized the indexing using a crawler thread to generate
work for a set of worker threads that created the index in parallel. The granularity of
work differed between the teams: In team L2’s program the crawler thread generated
work at the granularity of files, while in team L1’s and L3’s programs the crawler
thread parsed each file and generated work at the granularity of words. All teams
could query at the same time as indexing, but team L3 did not parallelize the query
itself. All teams had a shared index data structure that was updated in parallel by the
indexing worker threads and concurrently read by a query thread.
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The code inspections show that realistic programs may require many fine-grain
locks in order to have scalable performance. All teams attempted fine-grain locking
of the index data structure to allow concurrent access to disjoint parts of the index
structure; to protect the index structure, team L2 used 1600 (!) locks, team L3 used
80 locks, and team L1 used 54 locks. Team L2’s program, which had the largest num-
ber of locks, was the only locks program to scale on indexing. Locks are mostly used
in a block-structured manner; however, team L2 and L3 have cases where unlocking
is performed in both then or else statements due to a function return from the middle
of a critical section (explaining why there are more unlock operations than lock op-
erations in Fig. 2). Many locks are created dynamically, so the total number of locks
is larger than the count of lines of code count containing the pthread_mutex_t
construct.

Some locks teams used the high number of locks to compensate for their insecurity
when writing complex parallel programs. Team L2, for example, emulated the Java
synchronized construct. They introduced a lock for every object knowing that they
would sacrifice performance, yet they still had races. Most teams made the common
mistake of believing that unprotected reading of shared state is safe (despite being
taught otherwise), thus they had races. Only team L1 had critical sections protecting
a single shared variable read.

5.2.1 Team L1

Architecture and Data Structures A single crawler thread traverses the directories
and parses each file to generate tuples into a single shared work queue. Each tuple
consists of a word to be indexed, its file, and its file position. A pool of worker threads
take tuples from the queue one-at-a-time and concurrently update a shared index data
structure.

The index data structure consists of an array of sub-indices for every character.
Each sub-index consists of a map storing all words starting with the particular char-
acter of that sub-index. Each word contains a map of documents and the list of docu-
ment positions in which that word appears. To speed up queries with wildcards at the
beginning, a second array of sub-indices holds a map storing all words ending with a
particular character.

Team L1 designed the queries to work in parallel and to work concurrently with
the indexing threads. Each query spawns a new thread, which in turn spawns a child
thread for each word in the query—this seems legitimate, but thread creation over-
head might be a problem. Each child thread traverses the index independently. The
initial query thread waits by joining on its children and combines the results. For
multi-word queries, this approach forks a thread per word.

Synchronization Team 1 used locks to protect three areas of their program:
(1) a lock to protect the work queue plus two condition variables for producer-
consumer synchronization on the queue. (2) several locks protecting code that dis-
plays information; and (3) two arrays of locks and two additional locks protecting
accesses to the two sub-index arrays. Each lock in these two arrays of locks protects
a different character in one of the two sub-index arrays, so there are 54 (27 × 2) locks
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protecting the index structure. The number of dynamic lock instances is therefore
greater than in Fig. 2. Inserting into the index requires acquiring 2 locks on the sub-
indexes. A look-up in the index requires acquiring a lock on the index or a lock on
the reverse index if the query contains a wildcard.

To avoid deadlocks, the team specified an order for acquiring locks in these lock
arrays, documented as comments in a header file:

/************************
* !!! MUTEX ORDER !!!
* To prevent any deadlock, mutexes
* have to be locked in the following order:
* - mMtxFileIndex
* - mMtxKeywordIndexInverted[0]
* - mMtxKeywordIndexInverted[1]
* - ...
* - mMtxKeywordIndex[0]
* - mMtxKeywordIndex[1]
* - ...
* - mMtxDifferentKeywords
**********************/

This protocol is not complete, however, because it misses some locks that are ac-
quired in a nested fashion; in addition, the code violates the protocol in at least one
place. The team also used a copy-and-paste approach for many critical sections. Some
pieces of code, including comments, are reused in many places.

Despite the use of per-character locks for the index, team 1 had the worst index-
ing performance (Fig. 5). Their indexing performance gets worse as the number of
worker threads increases beyond 3 threads. Team L1 described experimental results
in their final report that point to the single work queue as a potential performance
bottleneck. The report also mentions that they had performance problems with their
initial indexing structure, which did not have sub-indexes. The team found out that the
execution time of queries depended on the frequency of the terms, so locks protect-
ing the per-letter indices might not have been appropriate for more frequent letters.
Nevertheless, the team did not re-design the indexing data structure to take advantage
of these insights.

Ease of Code Understanding Team L1’s code is visually pleasing, with verbose
comments, although there is a mismatch between the comments in the code and doc-
umentation that they submitted. Nevertheless, team 1’s code is difficult to understand.
It is difficult to reason that the code has no data races. Their code has many locks,
and documentation lacks details on which variables are shared, or on how locks are
associated with variables.

Indexing is mixed with querying; some undocumented parameters with unfortu-
nate names (e.g., “bool yes”) are used to steer the process, and in addition have dif-
ferent meanings in different places. Their submission also contained some dead code.

Problems with Usage of Language Constructs This team used many locks and
threads, which increased the complexity of their parallel code. They knew that their
queue design would be a performance bottleneck, but the code seemed to be difficult
to modify later on.
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5.2.2 Team L2

Architecture and Data Structures A crawler thread traverses directories and inserts
file names into one or more work queues. Each queue is implemented to have a set of
worker threads that take file names from the queue, parse the files, and concurrently
update a shared index data structure. When a queue is empty, its threads move to work
on another non-empty queue. In addition to the number of indexing threads, the team
introduced various other command-line parameters to simplify performance experi-
ments. They finally fixed the number of threads per queue to one thread per queue;
other parameters and their values that were used for performance measurements (see
Fig. 5) are explained next.

To balance the load, each queue tracks the sum of file sizes indexed so far. The
crawler thread first checks if a file is above a certain predefined file size threshold; if
so, it assigns the file to the queue with the lowest sum so far. Otherwise, the crawler
thread assigns the file in a round-robin fashion to queues. Team L2’s rationale was
that for small files, they did not want to incur additional overhead for a more complex
choice of queues. They finally fixed the value threshold for small files to 500 KB.

Another file size threshold specifies where the crawler thread inserts a file name in
a queue. Below this threshold, indexing threads dequeue files from the front and the
crawler thread adds a new file name at the end of a queue. Above this threshold, the
crawler thread appends at the front. The team explained that they wanted to achieve
an early indexing of big files with this strategy, and fixed this threshold to 1000 KB
after experimenting with different values.

In the inverted index data structure, stored words are accessed using the first two
characters. They don’t speed up wildcard searches using a reverse index. The team
assumes 40 possible characters and creates 40 × 40 = 1600 disjoint map structures,
each of which maps a word to the document and position within the document. With
this many maps, they hope to insert and access the index in parallel without caus-
ing much conflict. It is difficult to spot the high number of locks in the code of the
indexing data structure:

//vocabulary.h:
class Vocabulary {
private:

std::map<std::string, InvertedList> invertedLists;
pthread_mutex_t access_mutex;

...
//bigvocabulary.cc
...
characters = "abcdefghijklmnopqrstuvwxyz0123456789"
//creates the index-structure

for(int i = 0; i < (int) characters.length(); i++) {
std::map<std::string, Vocabulary> tmp_map;
for(int j = 0; j < (int) characters.length(); j++) {

Vocabulary tmp_voc;
tmp_voc.initialize();

...

Later on, this nested loop creates 1600 vocabulary objects, each of which contains a
lock and the map.
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Like the prior team, team L2 designed queries to work in parallel and to work
concurrently with the indexing threads. A main query thread takes user input and
forks off new threads that query the index in parallel. These threads are created per
word for every part of the query and store partial results in temporary buffers. When
all query threads are finished, combiner threads are started in parallel to aggregate
the buffers and produce the final result.

Synchronization Each sub-index has a lock, so team L2 has over 1600 locks. Similar
to team 1, the number of dynamic lock instances is greater than in Fig. 2. An indexer
thread has to acquire at least a lock on one of the queues to read a file name, and two
locks on a sub-index.

For each class that might be shared, they define a member field called ac-
cess_mutex. They want to emulate per-object monitors, such as those found in Java.
As seen in Figure 1, this team indeed has a Java background and no C++ background.
This programming pattern reflects Team L2’s Java background.

In Fig. 2 they have more unlock operations compared to locks because in a few
cases, they don’t use locking in a block-structured manner, but perform unlock in
then and else branches.

Team L2 used condition variables for producer-consumer synchronization of their
queues.

Team L2’s code has clear data races. The getter accessor functions on most classes
don’t use locks while updater functions do, so this team assumes that writing to a
shared data structure must be protected by a lock, but reading does not. The following
example illustrates multiple races due to unprotected read accesses to the jobs and
empty member fields:

//jobs.h
class Jobs {
public:
int size();
void add(StringFile file,...);
private:
std::deque<StringFile> jobs;
bool empty;
pthread_mutex_t access_mutex;

...
//jobs.cc
...
void Jobs::add(StringFile file,...) {
pthread_mutex_lock(&access_mutex);
... jobs.push_back(file);
... empty = false;

pthread_cond_broadcast(&wait_condition);
pthread_mutex_unlock(&access_mutex)

};
...
int Jobs::size() {return jobs.size();} //unprotected read
bool isEmpty() {return empty;} //unprotected read
}

In another case, they return a pointer to an object contained within the inverted index
whose updates are guarded by a lock, but the accesses performed through the returned
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pointer are not guarded by that same lock. This causes a race between the indexer and
the query processor.

Ease of Code Understanding Their complex parallelization scheme was not easy to
understand from the code. Many parameters are not expressive or lack appropriate
comments. A lot of information had to be inferred from the more general documenta-
tion. They create many threads, often dedicated to different types of work, interacting
with different queues. It is hard to say if everything works as they intended.

Problems with Usage of Language Constructs Some source code comments suggest
that they tried to compare a C++ object—and not a pointer to an object—to NULL.
Moreover, they put a lot of code in their header files, despite being taught not to do so.

5.2.3 Team L3

Architecture and Data Structures Team L3 has a pool of indexing threads each of
which has a queue containing words and document positions to index. A crawler
thread traverses directories, parses the files, and inserts the words and document posi-
tions in a round robin fashion into the queue of each indexing thread. Indexing threads
consume the words in their queue and update the index data structure. Team L3 uses
condition variables for producer-consumer synchronization of the work queues.

Compared to teams L1 and L2, both of whom used maps for their index data
structures, this team read more research papers to find a suitable indexing structure.
They finally used a BurstTrie based on [15], which is a more complex tree-based
data structure than the map-based data structures of teams L1 and L2. Part of their
time spent on reading was reading [15]. In addition, like team L1, they have a reverse
index (also a BurstTrie) to speed up queries with wildcards at the beginning.

Team L3 also designed queries to work in parallel and to work concurrently with
the indexing threads. They spawn a sub-query thread for each word in the query.

Synchronization They have an array of 40 locks at the root of the index data struc-
ture, and 40 at the root of the reverse index. The locks are acquired depending on the
first letter of the word to be indexed. An insertion into the index requires acquiring
two locks. This leads to the same scalability problems as for team 1, which is lots of
contention for words with a frequent first letter. They also have racy code:

//called by each indexer thread
void BurstTrie::Insert(...)
...
if(rootNode == NULL){
rootNode = new BurstNode(); //unprotected
rootNodeReverse = new BurstNode(); //unprotected
...

}

Ease of Code Understanding Many of their source code comments help; header
files have detailed comments for method parameters. There are also many useless
comments (e.g., many one-line methods having the comment “algorithm: trivial”).
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Locking is difficult to understand because the lock and unlock operations are not
used block-wise in several parts of the program.

Problems with Usage of Language Constructs Team L3 did not use locks in a block-
structured way, which made their use of locks difficult to understand and verify by
inspection. The locking protocol is also not well-documented.

5.3 Code Inspections for TM Teams

Like some of the locks teams, teams TM1 and TM3 implemented a crawler thread that
produced a list of files to index into a shared work queue from which a pool of indexer
threads grabbed work. Except for team TM1, none of the TM teams parallelized
queries. Unlike all of the other teams, team TM2 used a persistent index on disk and
ran queries in a separate program that read the on-disk index.

The code inspections show that realistic TM programs need to perform producer-
consumer synchronization. Team TM3 used a semaphore. Team TM2 avoided
producer-consumer synchronization because each indexing thread performed part of
the crawling. Team TM1 did not consider producer-consumer synchronization be-
cause an indexer thread exits once it detects an empty work queue. The C++ TM
model must therefore either be extended to handle these operations, or TM must be
allowed to be combined with other lock-based primitives.

In addition, realistic TM programs need to do I/O and optimize access to im-
mutable data inside transactions. Team TM2 used a global lock in a critical section
that performed many I/O operations. They also used __tm_pure to optimize com-
parisons of immutable strings inside of a transaction. It was hard for the code review-
ers to validate the correct usage of __tm_pure. A compiler-enforceable approach
would clearly have been better.

Like the locks teams, TM teams incorrectly assumed that unprotected reading of
shared state is safe. Most teams systematically tried to optimize transaction perfor-
mance by first checking a condition outside a transaction and then checking it inside,
similar to incorrect implementations of the double-checked locking pattern [4].

5.3.1 Team TM1

Architecture and Data Structures A crawler thread traverses directories and builds
up a list of files to be indexed, sorted by file size. There is a single shared work
queue between the crawler thread and the indexer threads. Several indexing threads
go through the documents and build up the index. The crawler thread runs concur-
rently with the indexing threads.

They use a two-level index based on linked lists. On the first level there is an entry
for each character a word can start with. For each of these entries, there is a list of
characters a word can end with on the second level. Attached to each entry on the
second level is a list of all words (with document positions) that start and end with a
certain character.

Queries containing several words use one thread per word. They didn’t finish other
types of searches. Wildcard searches are partly implemented and are intended to gen-
erate several threads that search the matching sub-indexes in parallel.
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They did not try out their program on the benchmark given in the lab (742 MB),
but rather on two small sets of files (21 MB with 8000 files, 120 MB with 214 files).
Their submitted version consumed too much memory and crashed. It was too late
when they discovered this problem. They were finally excluded from the competition.

Synchronization Team TM1’s code has clear data races that could make the program
crash. In the following code, they traverse a linked list starting from the sorted start
node without the proper synchronization:

//called by crawler thread
void FileIndex::add_File(string filename, int size) {
sortedFileNode* newNode = new sortedFileNode(...);
sortedFileNode* tempNode;
if (sortedstartNode == NULL) {...}
else {
tempNode = sortedstartNode;
while(tempNode->get_next() != NULL &&

tempNode->get_next()->get_size() > size)
{tempNode = tempNode->get_next();}

__tm_atomic {
newNode->set_next(tempNode->get_next());
tempNode->set_next(newNode);

}
}
...

In their documentation, they mention that they tried to design the program in a
way that reduced transactional conflicts. They also mentioned that TM was easy to
use and that it and helped avoid many sources of errors. Yet their program crashed
during benchmarking and clearly contained data races.

The tm_atomic construct mostly protects short code passages. The tm_abort con-
struct was used six times. In five times, they used it incorrectly to implement a racy
double-checking pattern:

while (added == 1) {
//check outside atomic
if (dokulist->get_counter() < DOKU_NUM) {
__tm_atomic {
//check inside atomic
if (dokulist->get_counter() >= DOKU_NUM) {
__tm_abort; }

else {
dokulist->add_to_DokuNode(newDoku, newPosi);
added = 0;

}}}}

Ease of Code Understanding Functions in header files had comments (e.g., for ex-
plaining the meaning of constants). Team TM1 were rather naïve and inexperienced
programmers. Despite being taught not to do so, large portions of code were con-
tained in header files.

Problems with Usage of Language Constructs They did not use TM function at-
tributes in header files, but only in definitions in the .c files.
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5.3.2 Team TM2

Architecture and Data Structures Unlike all other teams, this team does not have
a crawler thread. Instead, each indexer thread updates a shared directory stack that
keeps track of the current directory to crawl. This is also the only team to store the
index on disk, although not required.

This team used a modified B-tree according to the approach described in [19].
They looked at B-Tree implementation of scalingweb.com, but considered it too gen-
eral and having too many functions. Because they were unsure how long an adapta-
tion would take, they developed their own data structure in C. They used C except for
querying, where they used C++.

Queries are not parallelized; however, they do run concurrently with the indexer,
as was required. A second program performs the querying and uses the on-disk index.
Queries are single-threaded and run in a separate program from the indexer threads;
therefore, they did not use any synchronization in the queries.

Synchronization They create a background thread to print statistics periodically.
They have short atomic blocks that mainly update the B-tree and the statistics con-
currently.

Surprisingly, they use the tm_callable annotation only twice (for functions access-
ing the B-Tree) one of which was even unnecessary.

They use the tm_pure construct for a string comparison function (c and header
file); this function is used in one place to compare a given word with a word in the
B-tree. Since both words are immutable, this use of tm_pure is correct. Another usage
of tm_pure was for annotating a custom fprintf function that was used throughout the
program to store debugging messages in a file.

They used a global Pthreads mutex lock in an I/O function that returns the next text
file to parse. The lock is not used in a block-structured manner; unlocks are performed
in two different locations. The critical section beginning with the lock operation and
ending with one of the unlock operations has 85 LOC and is the longest in their
program. By contrast, their longest atomic block has 21 LOC.

Team TM2 also assumed that reading shared variables without protection is safe.
This could be a reason for their program to crash:

//bufferload.c
...
while (word = getWord(p)) {

node = findBufferWord(&b, word);
__tm_atomic {
node = findBufferWord(node, word);

...

They incorrectly tried to avoid transaction overhead in a double-checked locking
style:

//bufferload.c
...
if (dl->length < DLCHUNK) { //check outside
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__tm_atomic {
if (dl->length < DLCHUNK) { //check inside
dl->entry[dl->length].docid = docid;
dl->entry[dl->length].freq = 1;
dl->length++;
return 0;
}

}
...

Ease of code understanding Their code has almost no comments. They have a
“compact” style of C programming, due to one of the team members being an ex-
perienced C programmer. Their atomic blocks are easy to understand. Part of their
functionality implementing their indexing was difficult to understand, even by the
experienced code reviewers.

Problems with Usage of Language Constructs This team misunderstood the pur-
pose of nested transactions. They used statically nested atomic blocks in two places
where they put updates of statistics into their own nested transactions. The inner
atomic just updates statistics and has no abort statement, which means that they did
not use nested transactions for failure atomicity.

5.3.3 Team TM3

Architecture and Data Structures A crawler thread goes breadth-first through the
directories and produces a list of files to be indexed into a single work queue. A pool
of indexer threads each opens the files, invokes a lexer to produce term-frequency
pairs, and updates the shared index.

For the index data structure, they use a vocabulary trie as in [6], which is a tree-
like data structure with nodes representing shared prefixes of index terms. The shared
prefix structure is also advantageous for wildcard searches. To speed up wildcard
queries, they add into the tree the reverse of an indexed word, and put a pointer from
the last character node of the reversed word to the last character node of the indexed
word.

Queries are not parallelized, and querying uses just one thread.

Synchronization Two semaphores, fillcount and emptycount are used in the thread
pool for producer-consumer synchronization.

Tm_atomic mostly protects short code passages. They used several smaller
transactions back-to-back instead of few big transactions, to optimize perfor-
mance.

Their indexer code has a race, as it uses a variant of double-checked locking [4].
They are checking outside a transaction if their stack of files is empty, and perform
a pop operation inside that transaction. To work correctly, both operations should be
inside the same transaction:

while(true){
//consumer
sem_wait(&fillcount);
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if (new_files->is_empty()) {
break;

}
__tm_atomic {

filename = new_files->pop();
}
sem_post(&emptycount);
...

They used TM attributes in header files on the declarations of functions. They
were the only team to use TM attributes on template functions. They also have assert
statements inside transactions as well as printf constructs for debugging.

Ease of Code Understanding Despite very few comments, their code is quite read-
able. They have just one nested atomic section, but it’s unclear why they employed it.

Problems with Usage of Language Constructs There are ifdef DEBUG blocks with
cout operations inside transactions to print debugging messages. The compiler statis-
tics and support for debugging were not sufficient.

If a Standard Template Library (STL) for TM was available, they would not have
to write their own atomic dictionary or vector data structure. Thus, they could have
been even more productive.

6 Programming Effort

Throughout the project, each team had to fill out a form tracking how many hours
they spent per day on a certain task category. Figure 6 in the Appendix shows the
categories of tasks that were tracked, and Fig. 4 presents the data in terms of person-
hours spent by each team per category. The categories “read documentation” (1),
“search for libraries” (2), and “experiments” (5) factor out effort that might oth-
erwise be counted as “implementation” (category 4). This increases the validity of
the numbers reported for implementation, as they are not mixed with other tasks.
The “other tasks” category (8) consists of tasks that do not fit into the defined cat-
egories and are not considered to be interesting enough to be split up for the study.
Figures 7–13 in the Appendix present detailed effort measurements.

TM teams spent less total effort than the locks teams. In particular, TM teams
spent 28 hours less on reading documentation, 80 hours less on implementation, and
14 hours less on debugging than the locks teams. However, TM teams also imple-
mented fewer query types, as shown in Fig. 5.

Another source of evidence of programming effort is the interview results shown
in Tables 1 and 2. We first summarize the results of the interviews and then analyze
the efforts on parallelization, tuning, and debugging using both the data from Fig. 4
and the interview data.

6.1 Interview Summaries

6.1.1 Locks Teams

In the eighth week, two weeks before the deadline, all locks teams had parallel im-
plementations, but none of them could show a full demonstration. In the ninth week
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Fig. 4 Total effort of all teams in person hours

all teams had running search engines, but two of them appeared experimental: Team
L1’s program was unstable, and team L2’s had segmentation faults. Team L3 focused
on performance testing, but in the following week they found a bug. By the end of
the project in the tenth week, team L1 had run out of time and skipped performance
tests, team L2 was not finished with performance tests, and team L3 had discovered
a concurrency bug that they were trying to fix before submission.

6.1.2 TM Teams

In the eighth week, team TM1 had just a serial program, team TM2 had an incomplete
parallel indexer and no queries working, while team TM3 had a full-fledged working
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Fig. 5 Indexing and query performance. The right graphs excludes for each team the queries that are not
implemented or not executing correctly

demo. In the ninth week, team TM1 was still incomplete, team TM2 had a running,
but buggy parallel program with bad performance, and team TM3 fixed many bugs in
their search engine. By the end of the project in the tenth week, team TM1’s program
failed on the final benchmark, team TM2 had parallel indexing and queries work-
ing with reasonable performance, and team TM3 had an even more improved search
engine.

Teams TM1 and TM2 procrastinated parallelization due to various reasons. Team
TM1 lacked experience; both students were hesitant and insecure, especially dur-
ing implementation. Team TM2 procrastinated parallelization because they wanted
to have a more or less perfect sequential program as a basis on which to introduce
transactions. Despite being the most experienced team in the study, they thought that
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query implementation would be trivial and underestimated its complexity. All TM
teams reported that it was difficult to find out where and how to apply atomic blocks
and TM function annotations in a larger code base. In addition, TM performance was
hard to predict. We need better tools to simplify these tasks.

Interestingly, even though teams TM2 and TM3 complain about difficulties in
using TM constructs late into the project, the evidence shows that these teams merely
had the impression that they could not make good progress and were hampered by TM
constructs—the objective data shows that they did pretty well, even better compared
to the locks teams.

6.2 Parallelization

TM teams spent in total about half as much time as the locks teams on writing parallel
code (see [25] for details). TM allowed the experienced TM teams more time to think
sequentially, which is backed up by (1) the hours spent on sequential code versus
parallel code, and (2) the time lag between the first day of work on sequential code
and the first day of work on parallel code. The locks teams had a shorter time lag
between the first day of work on sequential code and the first day of work on parallel
code: team L1, 1 day; team L2, 13 days; and team L3, 19 days. By contrast, TM
teams have larger time lags: team TM3, 19 days; team TM2, 23 days; and team TM1,
29 days.

The effort data generally backs up several of our observations related to paral-
lelization from the interviews. First, the larger time lags for teams TM1 and TM2
back up our observations that these teams procrastinated parallelization. Team TM3,
who were also the first to have a working parallel version, started parallelization after
locks teams L1 and L2. The locks teams L1 and L2 were the first to start parallelizing,
whereas the teams TM1 and TM2 were the last to start parallelization.

6.3 Performance Tuning

The collected effort data shows that TM teams had more problems with performance
tuning than the locks teams. Late into the project, the TM teams had to experiment
with performance and restructure their programs to deal with performance problems.
Refactoring effort increased for all TM teams by the end of the project. Team TM2
mentioned during the interviews that they had to split up large transactions into
smaller ones, pointing to a late restructuring problem for TM programs. In order
to understand TM performance, all TM teams had sharp increases of effort by the
end of the project to do performance experiments with smaller programs. All these
results suggest that further research is needed into developing performance analysis
tools and refactoring techniques for TM-based programs. In addition, research on
programming patterns or anti-patterns for TM can help reduce performance prob-
lems.

6.4 Debugging

The total time for debugging was higher for locks teams than for TM teams (93 hours
vs. 79 hours, respectively). Debugging due to segmentation faults was the major de-
bugging cause for all teams. In total, locks teams spent 55 hours (59 %) of debugging



www.manaraa.com

Theory Comput Syst (2014) 55:555–590 581

time on segmentation faults, whereas TM teams spent 23 hours (29 %) of debugging
time [25]. The time for debugging unexpected program behavior, was comparable for
locks and TM teams; locks teams spent 20 hours (22 %) of debugging time, and TM
teams spent 16 hours (20 %) of debugging time.

The effort spent on debugging segmentation faults seems to be influenced by the
number of lines of code containing parallel constructs. Teams L3 and TM2 spent the
least effort (4 hours) on debugging segmentation faults [25]. According to Fig. 2,
team L3 had the lowest number of lines of code with parallel constructs among the
locks teams (120 LOC; 5 % of the code); similarly, team TM2 had the lowest number
of lines of code with parallel constructs among the TM teams (45 LOC; 2 % of
the code). By contrast, team L2 spent most effort on debugging segmentation faults
(35 hours) and had the most lines of code (261 LOC; 11 % of code) with parallel
constructs. In addition, team L2 had the most extensive usage of condition variables,
and team L3 the least among the locks teams. If future empirical studies confirm these
observations, then TM programs requiring fewer parallel constructs than comparable
locks programs will have an advantage in the debugging phase, as there would be a
reduced probability for mistakes.

In the questionnaire responses, the TM teams felt that they had many segmenta-
tion faults and unexplainable crashes compared to the locks teams. Objective data
shows, however, that the TM teams spent less effort than the locks teams on fixing
segmentation faults [25].

7 Performance Measurements

Figure 5 shows the indexing and query performance for each team’s programs. It
shows what was possible for the subjects to achieve in a realistic programming envi-
ronment with freedom of design decisions, but given the same programming problem,
the same limited amount of development time, and the same starting conditions for
all teams.

Performance measurements were done by instructors on a Dell eight core ma-
chine with a dual-socket Intel Quadcore E5320 QC processor, clocked at 1.86 GHz,
with 8 GB of RAM, and running Ubuntu Linux 2.6. Each point represents the aver-
age of five measurements. Only results of correctly working features are shown. All
teams were requested to provide a configurable command line parameter to specify
the number of indexing threads, and only this parameter was varied when measuring
performance. All source codes were compiled with Intel’s C compiler, using STM
extensions for the TM teams. All source codes were inspected to ensure that they
measure execution time in the same way; printf statements within time measure-
ment blocks were commented out. The input file set used for benchmarking consists
of directories containing a diverse selection of ASCII text files (50,887 files, 742 MB
in total). It includes the Calgary Text Compression Corpus (which is used to evaluate
compression programs), one big text file, four larger files, and many small files [25].

Team TM3 had the best indexing performance of all teams, completing the bench-
mark in 178 seconds. Compared to the fastest locks team on indexing (team L2) that
finished in 532 seconds, TM was three times faster. TM teams had the best execution
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times for half of the queries; they were 13 %–95 % lower than the fastest locks team.
Despite differing program designs, the measurements of the submitted search engines
represent counter-examples that contrast the literature overgeneralizing that Software
Transactional Memory always performs poorly [9].

Except for team TM1 who had memory consumption problems not fixed until
the deadline, all teams had executable parallel programs at the final deadline. No
search engine was perfect, however, as all implementations had queries that were
either too slow, missing, or executing incorrectly. The number of working queries
was the only difference in feature completeness, which is rather minimal considering
the complexity of the overall project. Out of 18 queries, locks teams implemented
18 (L1), 17 (L3), and 10 (L2), while TM teams implemented 14 (TM3), 4 (TM2),
and 0 (TM1). The locks teams implemented more queries than the TM teams, though
locks team’s queries were slow in many cases (see Fig. 5). Our observations suggest
that locks teams implemented more queries by skipping thorough software engineer-
ing practices such as testing and debugging (i.e., they risked that their features might
not work). We assume that the effort gap between locks and TM teams would be
even wider than in Fig. 4 if the locks teams had tested their programs in a fashion
comparable to the TM teams.

8 Key Results

The case study shows in the given setting that TM was indeed applicable to a more
complex, non-numerical program. The results also show that TM needs better mecha-
nisms for coordination and better handling of I/O. Programmer-initiated aborts were
almost never used, and when used, they were used mostly incorrectly. We provide
evidence that a combination of TM with locks is needed in practice and show real
use cases of how locks and TM need to be combined: Two of the TM teams used TM
as well as locks in the same program. One team combined TM with semaphores for
producer-consumer coordination, and another team combined TM with a lock to pro-
tect a critical section that performed many I/O operations. This is an important insight
because TM and locks were used as complementary approaches, not as alternatives
excluding each other. While TM implementations have used locks under the covers
(e.g., the STM runtime used in the Intel STM compiler [22]), researchers have de-
voted little effort to programming models that provide both locks and atomic blocks
with clear semantics. Our practical application provides evidence that we need to
expand the theory of combining transactions and locks [10, 37]. Intel’s recent Spec-
ification of Transactional Language Constructs for C++ [1] allows locks inside of
atomic blocks. The authors of this specification were in large part influenced by the
results of this study.

TM team’s program performance was not bad compared to the locks teams. Team
L1 was the only team to have implemented all queries, but they had the worst in-
dexing performance and a slow search. Locks teams spent more time on debugging
due to segmentation faults than TM teams. TM teams, however, spent more time on
performance-related issues than locks teams, which also indicates that we need better
TM performance tuning tools.
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The parallel programs of TM teams were easier to understand, according to code
inspections done jointly with industry compiler experts. Although all teams imple-
mented similar program functionality, all TM teams used significantly fewer parallel
constructs than the locks teams. Locks teams tended to have more complex parallel
programs by employing many locks, sometimes thousands of locks due to the index-
ing data structure. All teams had races that were detected after the project by code
inspection.

We detected differences in how teams perceived their progress by comparing sub-
jective data from the questionnaire and interviews with objective data from the code
and time report sheets. Team TM3, for example, thought that they were not advancing
fast enough because they had to use transactions, but at the same time they had the
first working parallel program and least effort of all teams. By contrast, locks teams
subjectively believed they made good progress but actually needed more effort.

The study also shows that TM is not a silver bullet for parallel programming.
The most inexperienced team using TM (TM1) did not produce a working program;
parallel programming remains difficult.

9 Threats to Validity

A case study provides detailed insights on one case being studied [30]. Our study
describes observations and explores a variety of previously unknown issues when
programmers with different experience use TM and locks in the realistic environment
of a large project. It is easy to disprove general statements even with a small number
of subjects, but difficult to prove general statements. By contrast, experiments would
require a totally controlled environment (at the expense of realism) and a very narrow
and previously known hypothesis to test. Even though the study focuses on just one
type of application, it is possible that results differ for other applications; however,
many of the encountered problems are representative and occur in other contexts as
well. Such effects can be compensated by triangulating data from several sources.
Internal validity is created by triangulating multiple sources of evidence and different
types of data to reduce bias. In addition, we employed randomization in two places:
once when creating the student teams, and once when assigning the programming
model to the teams. Before the study started, we gave the same parallel programming
training to all students to create similar starting conditions. We conducted a feasibility
study to make the sure that the amount of time should suffice to complete the project
in the given time. Even if we assume teams L2 and TM2 were outliers (the teams
with the highest efforts), the study results would still lead to the same conclusions
that the total implementation and debugging effort for locks teams is higher.

The employed STM compiler was a prototype and had some bugs, sometimes
producing crashes when compiling with optimizations. However, this was the most
advanced C++ STM compiler available at the time of the study. Other studies reported
similar problems [41]. Due to the different types of collected data (e.g., interviews,
questionnaire, personal observations), we were able to isolate situations in which the
experienced problems were due to compiler bugs.
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10 Related Work

Empirical studies for parallel programming with TM are scarce. This is supported by
a comprehensive overview of the TM literature [35]. Various Transactional Memory
implementations have been proposed based on hardware [16, 21], software [2, 5, 17,
22, 33], or a hybrid of the two [11, 18]. These studies have either used small programs
that exercise lists, hash tables, and other data structures, or have transformed lock-
based benchmarks into TM programs [28, 41]—for example, the Stanford ParalleL
Applications for SHared memory (SPLASH-2) [38], the PARSEC benchmark suite
[7], or SPEC OMP [34]. In addition, TM-specific benchmark suites have been devel-
oped, such as the Stanford Transactional Applications for Multi-Processing (STAMP)
[20]. All of these benchmarks consist mostly of numerical applications. Various case
studies have assessed the performance of non-trivial applications using TM (e.g.,
Lee’s algorithm for circuit routing [3], the Linux sendmail application [31], among
others [13, 32, 36]). These studies did not pay attention to software engineering as-
pects of TM.

Rossbach et al. [29] looked at errors in the programs of a larger number of un-
dergraduate students from different classes, but in a much less rigorous study than
we present. For example, [29] had unequal groups of students who employed STM
implementations that changed over time. By contrast, our study ensures continuity
and the graduate students use an advanced industrial-strength C++ STM compiler to
create a complex application.

11 Conclusion

This is the first case study to provide insights for TM programming from a variety
of data, including code quality and metrics, performance, effort, and subjective pro-
grammer impressions. The study provides evidence for the necessity to employ TM
and locks in a complementary way, and that they should not be considered as alterna-
tives excluding each other. Our evidence also shows that to realize fully the benefits
of TM in C++ we need language refinements supporting condition synchronization,
and better debugging and performance tuning tool support. The lessons learned from
this study significantly influenced the development of Intel’s new generation STM
Compiler. Even with TM, however, parallel programming remains difficult, so the
quest for new parallel programming language features must continue. To make this
search easier, programming language researchers must develop and employ more so-
phisticated usability evaluation techniques for language constructs [23, 26].
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Appendix

Fig. 6 Effort categories logged by each team
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Fig. 7 Effort category 1: Time spent on reading

Fig. 8 Effort category 2: Time spent on search for libraries
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Fig. 9 Effort category 3: Time spent on conceptual development and design

Fig. 10 Effort category 4: Time spent on implementation
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Fig. 11 Effort category 5: Time spent on experimentation

Fig. 12 Effort category 6: Time spent on testing
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Fig. 13 Effort category 7: Time spent on debugging
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